

Granules India Limited Gagillapur Plant Hyderabad - India

25th National Award for Excellence in

Energy Management

SI No	Name	Designation	Department
1	Bangarubabu Bhagavathula	General Manager	HOD – Engineering & Projects
2	Venkateswar Chelluri	Assistant General Manager	Head – Electrical
3	Suresh Pathi	Deputy General Manager	Head - Operational Excellence

- Revenue : 4500+ Cr./Annum
- Total Manufacturing Sites : 9 Nos
- Presence : Across 75+ Countries
- Team Strength : 3800+ Employees.
- Unique Feature : Worlds Largest PFI Facility
- We manufacture :
 - Active Pharmaceutical Ingredients (APIs)
 - Pharmaceutical Formulation Intermediates (PFIs) and
 - Finished Dosages (FDs)
 - Strong presence in Products Paracetamol, Ibuprofen, Metformin and Guaifenesin.

Facility & Major Equipments

Facility		Sq. ft		Process Equipment/Area	NOS	Capacity	UOM
FD		52380		Granulation	16	2833	Motric Tops
PFI		46350				2000	
MUPS		54876		Compression Machines	25	3780	Million
Built up Area (Plinth Area)		298120)	Coating	10	2763	Million
Others (Greenery, Roads & Parking)		849853	3		10	2705	
Total Area		1147974		Packing (Bottle and Blister)	13	2284	Million
Utility	NOS	Capacity	UOM	Electric	al		
Chillers	6	3400	TR	Contract Demand	5800 KVA/HP		
Air Compressors	6	10480	CFM	Connected Load	21293 HP		,
Coal Boiler	1	6	ТРН				
FBC Boiler	1	10	ТРН	Transformers	13000 Kva		
F.O Boiler	1	6	ТРН	DG system		9370 Kva	

Manufacturing Process

S.No.	Details	1	2	3	4	5	6	7	8	9	10	11
1	Equipment	Sifter	Binder Preparation Vessel	RMG	FBD	Quadro Mill	Metal Detector	PTS	Octagonal Blender	Tippler	IPC	Binder preparation vessel
2	Process	Sifting	Binder Preparation	Dry mixing & Granulation	Drying	Milling	Rejection of metal particles	Inprocess material transfer	Blending	Dried granules unloading	Dried granules/Milled Granules storage and transfer	Binder Preparation
3	Capacity	250kg/hr	150ltr	800ltr	1500ltr	3900kg/hr	Range: 0- 299	4000kg/hr	16000ltr	1500ltr bowl	1000ltr	150

Thermal & Diesel Consumption : FY22-24

Power Consumption: FY22-24

Internal Benchmark

Sr. No.:	Equipment/Area	Measured Value	UOM	Baseline FY'24	Target FY'25
1	Chiller	Efficiency	Kw/TR	0.74	0.73
2	Boiler	Fuel Economy	Kg Steam/Kg Coal	5.5	6.0
3	Air Compressor	Specific power consumption	Kw/CFM	0.17	0.16
4	DG	Fuel Economy	Kw/Lt	3.45	3.6

Projects Implemented: FY21-24

Year	No of Energy saving projects	Investment (INR Million)	Electrical savings (Million kWh)	Thermal savings (Million Kcal)	Total Savings (INR Million)	Payback period (in months)
FY 2021-22	2	19	1.97	0	13.5	16
FY 2022-23	2	20	1.0	0	7.43	32
FY 2023-24	2	12	0.83	0	4.6	31

Summary of Energy Saving Projects								
S.no.	Description of Energy Conservation Projects	Energy Saving / year (kwh)	Cost saving/year (lacs)	FY				
1	EC blowers in place of conventional belt driven motor blowers	474000	34.2	2023-24				
2	Rooftop Solar power installation (Solar Power Generation)	359000	12.14	2023-24				
3	EC blowers in place of conventional belt driven motor blowers	762000	54.94	2022-23				
4	Transformers optimization (one Transformer in place of 3 Transformers)	238000	19.34	2022-23				
5	Centrifugal water cooled chillers in place of Air cooled chillers	1740000	120	2021-22				
6	Intelligent controllers installation in place of manual AHU operation	214000	15.43	2021-22				
7	Other Energy Projects	-	298.89	2021-24				

Project 1: Conventional blowers to EC Blowers (FY22-24)

Elements	Before	After
Picture		
Condition	Conventional Blowers	EC Blowers (Electronically commutated)
Energy Consumption/Blower (KWH)	8.27	5.48
Working	Belt-driven blower motor fan used in HVAC systems to circulate air through the system. The function of this blower is to move air over the heating or cooling coils and distribute it throughout the building. The belt- driven mechanism allows for the adjustment of fan speed and efficiency by changing the belt's tension or by using different pulley sizes. Due to belts there is a significant power losses.	The rotor of an EC motor is a permanent magnet and the stator has a coil arrangement. By apply DC power to the coil, the coil is energized and become an electromagnet. The operation of an EC motor is based on the force interaction between the permanent magnet and the electromagnet. Power losses will be 30% lesser compare to conventional blowers.
Quantity	83	83
Cost Saving/Annum (Lacs)	-	61

Project 2: Optimization of transformer from 3 to 1 NOS.(FY22-23)

Elements	Before	After		
Actual Picture				
Systematic Picture	EXISTING-HT POWER SUPPLY DISTRUUTION SYSTEM FOR PH BLOCKS	33kv VCB 2500Nve 33kv/43 volts Transformer PLANT LOAD		
Number of Transformers	3	1		
Transformer Capacity (Kva)	3000, 1250, 1250	2500		
Voltage Level	33kv/11kv, 11kv/433 V	33kv/433 V		
Full Load Losses (Kw)	32.5, 13.1, 15.75	25		
Energy Saving (kwh)	-	238820		
Energy cost saving/Year (Lacs)	_	19.34		
ROI	_	24 months		

Project 3: Air cooled chiller to Centrifugal Chiller (FY21-22) GRANULES

Elements	Before	After
Picture		
Number of chillers	2	1
Capacity (TR)	400	1000
Specific Energy Consumption	1.1 Kw/TR	0.6 Kw/TR
Power Savings (KWH)	-	1740000
Cost Saving (lacs)	-	120
Capex (Lacs)	-	130
ROI	-	13 Months

Project 4: Manual AHU Control to intelligent controller (FY21-22)

Elements	Before	After
Picture	Manual Control	<image/>
Number of controllers	_	30
Annual Electrical Saving (Kwh)	_	214000
Cost Savings (lacs)	_	15

Replacement of conventional CFL, FTL & HPMV lamps with LED Lights.

- Energy Saving: 1,01,040 kwh
- Cost Saving per Annum: 7.89 lacs
- Year of Implementation: FY20-21

33 KV HT Dedicated power supply line from 132KV substation.

- Energy Saving: 20 KL diesel/Month
- Cost Saving per Annum: 200 lacs
- Year of implementation: FY22-23

FBC Boiler Installation.

- Coal Saving: 679 MT/Year
- Cost Saving per Annum: 69 lacs
- Year of Implementation:FY21-22

Installation of flash jet pumps for steam condensate recovery

- Coal Saving: 216 MT/Year
- Cost Saving per Annum: 22 lacs
- Year of Implementation:FY21-22

Renewable Energy (On-site): Roof Top Solar Panels 320 Kwp

Year	Source (Solar, wind, etc.,	Installed capacity (in Kwp)	Capacity addition (MW) after FY 2021	Total Generation (million kWh)	Share % w.r.t to overall energy consumption	Cost Saving w.r.t. EB v/s Solar (Lacs)
FY23-24	Solar	320	0	0.359	0.9%	12

Renewable Energy (Off-site): Solar (Medak Solar-PPA)

Year	Source (Solar, wind, etc.,	Total offsite Installed capacity (MW)	Capacity addition (MW)	Total Generation (million kWh)	Share % w.r.t to overall energy consumption
FY21-22	Solar (Medak Solar-PPA)	-	-	7.6	26%
FY22-23	Solar (Medak Solar-PPA)	-	-	7.2	20%
FY23-24	Solar (Medak Solar-PPA)	-	-	6.5	16%

Information : GHG Inventorisation and Public disclosure

Our emission disclosures for FY 23 has been updated during FY 24 disclosure cycle to include emissions for all our subsidiaries and now includes disclosure of our comprehensive scope 3 emissions in addition to previously disclosed Scope 1 and Scope 2 emissions.

Granules scope 3 emission which represents 87.8% of our total carbon footprint, calculation of which is based on GHG protocol's corporate value chain (scope-3) accounting and includes 11 out of 15 categories which are applicable to Granules operations.

GHG Emissions Category	FY 21-22	FY 22-23	FY -23-24
SCOPE 1 ,Tons of Co2e	14652	15975	16227
SCOPE 2, Tons of Co2 e	16399	22897	9644
Scope-1+2 Tons of CO2e	31051	38872	25871
SCOPE 3 ,Tons of Co2e		3,25,494	3,53,681

78.0%

Source : Granules – BRSR Report FY 23-24 Page No 97

Action Plan: Short & Long Term

Accelerating Renewable Adoption	 Accelerated transition to renewable for GGP and BPL (PPA, Solar Roof Top & REC) GGP FD site & BPL API site contributing to 68% of Grid Energy Consumption Renewable adoption through PPA, Roof top Solar and RECs
Net Zero Roadmap	 Scope 1 – Efficiency measures (20-25% reduction) + Biofuel boiler/ Electrification Scope 2 – Efficiency measures (20-25% reduction) + Renewable Energy (PPA & RECs) Roadmap for Net Zero by 2050 – focused on Scope 3 reduction (CZRO)
Cascade & Beyond	 Scope 3 is the biggest component of our emissions Cascade : Adopting Supplier's sustainability framework, Suppliers to set SBTi targets Going Beyond Granules CZRO : Solve Scope 3 emission challenge through Pioneering initiative involving Green energy, Green Molecule and Circular Economy

Various decarbonization levers can be considered by Granules to reach Net Zero

Scope 1 / Scope 2 –	Raw / Packing Waste generated		Upstream / Downstream	Business Travel /	Enablers
Existing Facilities	Materials from operations		Logistics	Employee Commuting	
Resource Circularity - Steam / Condensate / Waste Heat Recovery	Sourcing from low-carbon suppliers	Shifting waste treatment (from landfill to other)	Consignment / Container consolidation	Reducing travel (e.g., via virtual meetings)	Raising leadership / employee awareness
Boiler efficiency improv. /	Embracing	Partnering with recycling	Logistics Mode shift (e.g., air	Commuter Mode shift (e.g.,	Regular tracking / monitoring
conversion (to biomass)	near-sourcing	firms (e.g., for PPES)	to sea)	company bus)	
Chiller plant optimiz. /	Supplier targets for Reducing hazardous		Partnering with "greener" 3PL players		Pursue sustainability
automation / replace	Scope 1 / 2 emissions waste				transparency
Compressed air system /	Identifying new	Reducing single-use items	Packaging Optimization	Enabling WFH (for support	Refining sourcing contracts /
HVAC optimization	"green" suppliers	(e.g. paper waste)		staff)	SLAs
Optimizing production pathway (e.g., via enhancing solvent recovery) for lower energy / raw			Utilizing green last-mile	Offering EV Charging	Supplier Capability Building
material consumption and emissions			delivery (port to plant)	infrastructure on-site	
Energy Storage Systems	Adopting sustainable raw /	Adopting sustainable /	Enhance logistics demand	Supporting EV	Implementing internal
(battery, thermal)	packing materials	reusable packaging	forecasting	(2W, 4W) adoption	sustainability policies
Sourcing more renewable electricity	Insourcing select raw materials (i.e., CZRO)	Exploring waste to energy options	Implement logistics digitalization	Promoting public transportation	Sustainability Data Platform
	Solvent recovery				
Country-specific decarbonization trends (e.g., grid decarbonization)					

Green Supply Chain Management : Policy & Pledge

Green Purchase Policy

Granules India Limited is committed to promoting sustainability and environmental responsibility throughout our supply chain. Our Green Supply Chain Policy aims to minimize the environmental impact of our operations by integrating sustainable practices and encouraging our suppliers to adopt environmentally friendly measures.

Policy Statement

- 1. Sustainable Sourcing
- 2. Environmental Compliance
- 3. Carbon Footprint Reduction
- 4. Resource Efficiency
- 5. Sustainable Packaging
- 6. Supplier Evaluation and Engagement
- 7. Transparency and Reporting

Supplier Pledge : As a valued partner, we ask you for your commitment to the following pledge

- **1. Disclose Carbon Footprint**
 - Disclose Scope 1, 2, and 3 emissions related to Granules business by the end of 2024.
- 2. Commitment to Science Based Target Initiative (SBTi)
 - Develop and submit a science-based target to the SBTi
 - by the end of 2025.
- 3. Declare Product Carbon Footprint (PCF)
 - Provide Product carbon footprint (PCF) for products sold to
 - Granules.
- 4. Commit to Accelerating Renewable Energy Adoption
 - Increase renewable energy in the electricity purchase and

to 100% renewable energy within next 5 years.

In the financial year 2024, we extended our efforts through our Scope-3 GHG Assessment. We reached out to all key suppliers to collaborate on providing accurate data related to their manufacturing processes, energy and fuel consumption, Scope 1, Scope 2, and Scope 3 emissions, and product carbon footprint for

materials supplied to Granules India.

Furthermore, we launched a Supplier Sustainability Program to engage key suppliers in committing to and disclosing environmental and climate-related metrics. This program encourages suppliers to disclose their emissions data, develop science-based targets certified by the Science Based Targets initiative (SBTi), and provide product carbon footprint information for products sold to Granules India. It also promotes the adoption of renewable energy in their electricity purchases. Through these collaborative initiatives, we aim to enhance transparency, promote sustainability, and drive positive environmental impacts across our entire supply chain.

Energy Monitoring System

EL Measure: Power Monitoring System for each area.

Shift wise Coal, FO & Diesel monitoring report

Date	Day	Power (KWHr)	Diesel (L)	Reason for excursion-Diesel	Water (KL)	Coal (Kg)	
1-Aug	Thu	106854	924	33kv incoming EB power failure	500	16590	
2-Aug	Fri	102862	0		460	17365	
3-Aug	Sat	106878	0		440	16905	
4-Aug	Sun	105293	0		420	16470	
5-Aug	Mon	108200	336	33kv incoming EB power failure	440	16565	
6-Aug	Tue	106342	0		420	17045	
7-Aug	Wed	108143	0		360	17325	
8-Aug	Thu	108232	1266	33kv incoming EB power failure	460	16555	
9-Aug	Fri	108232	0		420	16600	
10-Aug	Sat	105451	762	Circuit breakers and UPS Maintenance activities	480	17045	
11-Aug	Sun	113634	831	33kv incoming EB power failure	500	16650	
12-Aug	Mon	119211	0		440	17265	
13-Aug	Tue	119530	0		480	17395	
14-Aug	Wed	115027	2800	33kv incoming EB power failure	580	17530	
15-Aug	Thu	117818	2900	33kv incoming EB power failure	400	17455	
16-Aug	Fri	123224	2500	33kv incoming EB power failure	360	19230	
$\Rightarrow \equiv Safety$	OPEX-Engg	OEE Co	• • • • • • • • • • • • • • • • • • •	E Coating OEE Packing OEE Y	ield Weekly s	ummary P vs A P	rodu

Online Monitoring of Power consumption enables to reduce inefficiencies and leakages.

Awards: Telangana State Energy Conservation (TSECA)

Net Zero Commitment

Target

- Align with SBTi targets for limiting global warming to 1.5°C
 - Achieve net-zero targets by 2050
 - Reduce Scope 1 and 2 absolute emissions by 42% by FY 29-30 from FY 22-23 baseline
 - Reduce Scope 3 absolute emissions by 42% by FY 29-30 from FY 22-23 baseline
- Work with strategic suppliers to set SBTi emission reduction targets by FY 26-27

Voluntary Initiatives Commitment

Committed and Submitted SBTi Near term and Net Zero Commitment aligned to 1.5°C for Validation

Committed for UNGC 10 Principles of Human rights, labor, Environment, and anti-corruption

Granules MSCI ESG Ratings

Received "C Score" in Climate Change Disclosure

Received EcoVadis Silver Rating for Granules unit-1 Bonthapally & Received Bronze Rating for Unit-2 Jeedimetla

Granules Gagillapur unit has cleared the C-TPAT (Customs Trade Partnership Against Terrorism I U.S. Customs and Border Protection) Audit with 84% score

	Nodalitap
Baseline (Scope 1, 2 & 3)	 Baseline (FY 23) Scope 1 and 2 : 115,790 t Co2 equivalent (GIL, Consolidated including subsidiaries) Scope 3: ~624,765 t Co2 equivalent (GIL, Standalone)
2 SBTi 1.5° aligned target	 SBTi Target submission, aligned to 1.5 C and Net Zero 2050 Scope 1 and 2: 42% absolute emission reduction by 2030 Scope 3: 42% absolute emission reduction by 2030
3 Accelerating Renewable Adoption	 Accelerated transition to renewable for GGP and BPL (PPA, Solar Roof Top & REC) GGP FD site & BPL API site contributing to 68% of Grid Energy Consumption Renewable adoption through PPA, Roof top Solar and RECs
4 Net Zero Roadmap	 Scope 1 – Efficiency measures (20-25% reduction) + Biofuel boiler/ Electrification Scope 2 – Efficiency measures (20-25% reduction) + Renewable Energy (PPA & RECs) Roadmap for Net Zero by 2050 – focused on Scope 3 reduction (CZRO)
5 Cascade & Beyond	 Scope 3 is the biggest component of our emissions Cascade : Adopting Supplier's sustainability framework, Suppliers to set SBTi targets Going Beyond Granules CZRO : Solve Scope 3 emission challenge through Pioneering initiative involving Green energy, Green Molecule and Circular Economy

Roadman

Thank you

Bangarubabu Bhagavathula Phone No.: 7337446129 e-mail: bangarubabu.bhagavathula@granulesindia.com